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Abstract

I present an investment environment wherein investors demand an asset based on
perfectly informative signals, but face uncertainty about the timing of their information
acquisition. I show that this uncertainty reduces the demand and price for every period
but that in the limit, price converges to the true value of the asset as the number of
periods increases. By introducing a concept of confidence over the time in which
investors receive a signal, I show that the impact of uncertainty can be exaggerated
in either a negative or positive direction, depending on the type of confidence under
consideration, with the limit price reflecting the true value of the asset.

1 Introduction

Uncertainty is one of the most widely studied phenomena in all of economics. Without

uncertainty, all decisions could be made through a combination of incorporating economically

relevant variables and backward induction, yielding definitive answers and leaving economists

(and people in general) to dedicate themselves to other pursuits. But uncertainty pervades.

Outcomes of investment choices, information quality, and even the preferences of agents all

suffer from the whims of uncertainty. As such, in order to accurately capture behavior the

field of economics must accommodate and incorporate into models the reality of uncertainty

in any form it may take.

One form of uncertainty that has garnered much attention in the realm of financial

investment and firm profit maximizing decisions is over the quality of information. The final

value of an uncertain decision can be found in the outcome into which uncertainty resolves

itself, but when the decision must be made before such resolution the value lies solely in

the quality of information over the possible outcomes. It is no wonder then that the quality
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of information is of such interest. But a metric over informational quality misses one of

uncertainty’s most important factors: timing. It is important not only to employ accurate

information in making decisions in the face of uncertainty, but it is perhaps equally important

to employ this information at the appropriate time.

In this paper I introduce a setting in which profit maximizing agents undertake decisions

in the face of uncertainty. However, it is not the quality of information that is uncertain

to agents, but rather the timing with which agents receive this information. To emphasize

the effect of timing on information driven decisions, multiple agents will receive signals at

different times, yet none will be aware of the order in which they receive this profit relevant

information.

In order to isolate the role of positional uncertainty, investors will receive a perfectly

informative signal about the state of the world, in this case the value of an asset. While

the asset’s valuation is unambiguous, agents will must determine their investment strategies

without knowing their position of movement. That is, they must face the uncertainty of

other investors having already made their decisions, incorporating information into the asset

price, thereby diminishing the value of the informative signal.

Upon a groundwork of behavior under positional uncertainty I build the notion of confi-

dence. Agents who are equally likely to move in any particular period will be said to suffer

from a confidence bias if they place any weight other than the uniform distribution on their

beliefs of moving in any period. This notion of confidence encompasses both overconfidence,

as is traditionally the focus in the behavioral literature, as well as underconfidence. Over-

confidence will manifest in a type of front-loading of beliefs so that the agent believes it is

more likely they will move earlier than later, expecting that greater gains to investment are

possible than would be so with no such bias. Underconfidence will have the opposite quality,

leading agents to place greater weight on the belief that they move in later periods.

The paper will proceed as follows. In section 2 I will discuss the most closely related

literature; in section 3 I will introduce a basic model of investment; in section 4 I will

introduce uncertainty; in section 5 I develop a notion of confidence that can change based on

agents’ beliefs in equilibrium; section 6 concludes. All proofs are relegated to the appendix

unless they provide useful insight into the decision making process.

2 Related literature

Much work has been done on overconfidence in the trading of financial assets. Perhaps

the most closely related work is that of Gervais, Odean (2001) [4]. In this model investors

receive either a perfect signal with a fixed probability or a signal that is pure noise, and then

2



must update their belief of receiving the informative signal. Through varying a confidence

parameter they show that belief of acquiring an informative signal can either converge to

the case of perfect rationality for low levels of overconfidence, or diverge for high levels of

confidence.

This work has many related elements including accounting for the confidence of agents

and a multi-period investment setting. Among the many departures, however, is that here

I investigate the role of confidence over position, not signal acquisition. Agents know they

receive a perfect signal about the value of the asset but have imperfect information about

the period in which they receive it. In addition in their setting agents receive signals and

invest in each period. In order to isolate the role of confidence over positional uncertainty I

restrict attention to one signal although the model generalizes to more frequent signals.

In other works Odean (2008b) shows that overconfidence in investors tends to lead to

excessive trading and lower expected utility. Overconfident agents tend to overreact to

salient information and underreact to trade relevant information, thereby preventing the

information of rational agents from being fully reflected in market price [7]. Barber and

Odean (2001) also find that men trade stocks 45% more than women, a finding hypothesized

to come from overconfidence [1].

This excessive trading and overreaction to salient information is supported by an exper-

iment comparing traders new to online trading to their previous gains (Barber and Odean

2002) [2]. It is found that while phone traders tended to beat the market, upon the switch

traders tend to under-perform, a finding unexplained by the reduction in market frictions

alone. It is hypothesized that overconfidence coupled with an increased trading speed cause

online investors to increase their trading volume and reduce their performance.

Other studies show similar effects of confidence in other settings. Through FMRI scans

Peterson (2005) shows that investor overconfidence may be related to reward system activa-

tion in the brain [8]. Handy and Underwood (2005) find that overconfidence increases price

at which managers repurchase share prices [5], a finding backed up empirically by Shu et.al

(2013) [9]. Other studies demonstrate how the salience of news stories can lead to overcon-

fidence and excessive trading (Barber, Odean 2008) [3] and that due to loss aversion traders

tend to keep their assets when they suffer large losses disproportionately more often than

when they enjoy small gains (Odean 1998) [6].

3 The model

I consider an environment in which agents receive information about the value of a financial

asset. The previous value v0 of the asset is unknown to investors but is assumed to have
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already been incorporated into the market price. Agents receive a signal η about how

the value of the asset changes. Agents receive this signal privately and without distortion

but share a prior belief with all market participants that it is drawn from the distribution

η ∼ N(0, σ2).

Agents wish to maximize the difference between the value of the asset and the price they

pay. Upon receiving signal η they know the value of the asset is vt = E[v0] + η, but they are

unaware of the prior value v0. Agents view price pt and choose their demand for the asset

x in order to maximize E[x(vt − pt)]. Importantly, there will be no short sale restrictions so

that agents can demand a negative amount of the asset.

In addition to not knowing the initial value v0 of the asset, agents are also unaware of

their position of movement. If the agent moves at period t then t − 1 agents have already

had the opportunity to move. In this setting position of movement refers to the time at

which the signal is received, which is to say that if an agent moving at period t sees a price

pt, this price already reflects information η incorporated into it by t− 1 other agents.

Notice that both elements of uncertainty are necessary to capture the idea of positional

uncertainty. If the agent knew v0 they could maximize x(v0+η−pt) without any information

about their position of movement. Likewise if the agent were to know their position, through

backward induction the agent could deduce how much information η was incorporated into

the price by the previous t− 1 agents.

In addition to the aforementioned informed traders there is a liquidity trader who de-

mands an amount of the asset every period. This is necessary not only to capture the reality

that investors participate in the market for reasons other than price (e.g. to raise capital

or they are uninformed) but also to guarantee trade in a market with informed investors

who present an information asymmetry for any price setting mechanism. Each period the

liquidity trader will demand zt ∼ N(0,Ω) of the asset, an amount independent of process

that yields η and independent of liquidity demands of other periods. All market participants

share common knowledge of the i.i.d. zt and its independence from η.

Finally there is a market maker that sets the price pt each period. The market maker

knows the prior distribution of η, zt, and their independence from one another. Like the

informed agents the market maker does not know the value v0 of the asset at period 0, but

in period 1 the dissemination of information η introduces the informational asymmetry. To

combat this asymmetry the market maker sets a price each period in order to match the

value vt as closely as possible given current and historical demands for the asset. That is,

pt = E[vt|ωt, ht] where ωt = xt + zt, the sum of demand from the informed and liquidity

traders, and ht = (wi)i<t is the historical series of market demand for each period.
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3.1 The case of no uncertainty

To gain a foothold into the decision making process faced by investors it is useful to start

with the case of no uncertainty. Moreover, the case without uncertainty will provide a

benchmark against which to compare decision making when agents do not know their position

of movement.

Consider the investment setting as described with T periods and one agent moving in

each period. Each agent knows their position t ≤ T and chooses demand to maximize the

difference between the value of the asset and price per share. To describe how agents make

this decision, recall that they maximize E[x(vt − pt)]. While vt is perfectly known as agents

know their position of movement, there remains uncertainty in the price.

As we will see the linear equilibrium takes the form pt = pt−1 + λtωt. Since demand

ωt includes liquidity traders that behave randomly, agents cannot perfectly predict price

movements in period t and must take an expectation. The optimal demand then comes from

maximizing E[x(vt − (pt−1 + λt(x + zt)))] = x(E[v0] + η − pt−1 − λtx), where it is assumed

that price information in p0 already contains v0; in fact this assumption can (with some error

induced by the liquidity trader) be verified by the agent through backward induction. The

agent’s optimal solution is then xt =
E[v0]+η−pt−1

2λt
.

The market maker sets a price attempting to match the asset’s value, taking into account

noise from the liquidity investor. Then in a linear equilibrium pt = E[v0 + η|βtxt + zt, ht].

In equilibrium the value of βt is known to the market maker so price setting becomes an

exercise in signal extraction with noise zt ∼ N(0,Ω) induced by the liquidity trader and a

prior belief pt−1 − p0 of the value η. This yields an updated estimated value of the asset

pt = pt−1+λtωt. In this environment the equilibrium values of βt and λt take a simple form.

Proposition 1. For T ∈ N ∪ {∞} periods, if each agent knows their position t ≤ T then

there exists a linear equilibrium of the form pt = pt−1 + λtωt, x1 = β1η, and xt = βtη + Zt

for t > 1 with

λ1 =
1

2

√
σ2

Ω
, β1 =

√
Ω

σ2
, λt =

1√
8
, βt =

√
2

2t−1
for t > 1, and Zt ∼ N(0, Vt)

Proposition 2. In the above linear equilibrium, price can be expressed as pt = p0+
[
1−

(
1
2

)t]
η+

Z ′
t where Z ′

t ∼ N(0, V ′
t )

As expected from the investor’s first order condition, the equilibrium demand for the

asset more or less halves each period in proportion to the value of the asset. In fact, for

periods t = 2 and onward demand xt = βtη exactly halves every period. The reason for this

is that in equilibrium β is a ratio of the variance of liquidity trading Ω and of the market
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maker’s inferred variance from the procedure of noise signal updating. In the first period

the market uses prior belief σ2 of the asset’s variance. But thereafter updated variance of

the market maker is constant at Ω
2
. This result actually holds in a more general setting.

Lemma 1. For any T period investment setting as above where agents demand βtη and

βt =
y
λt

is a constant multiple of 1
λt

and for any initial asset variance V0, variance is constant

in all periods t ≥ 2 and takes the form Vt−1 = yΩ

A technical detail that explains the constancy of βt and λt for periods t ≥ 2 to be sure,

the instant convergence of inferred variance is also interesting in its own right. Not only

does this result apply to the present case where agents are aware of their position, but it

also applies when agents face positional uncertainty. This can be seen from the fact that

the term y above can be any function of priors over positions of movement, so as long as y

is constant so too is the inferred variance vt−1. Another surprising feature of the updated

variance is that it is independent of the distribution of signal η, depending only the liquidity

trading variance Ω.

In addition to being an expected consequence of the agent’s first order condition the

result that demand halves in each period also provides insight into the rationality of the

market price updating. In equilibrium the change in price can be expressed as pt − pt−1 =

λt(βtηt + zt) = 1
2t
η + λtzt. In each period the market receives half as much information

as in the prior period so that the rate of information transmission slows. Price is thus a

geometric series save for the error in each period resulting from the presence of liquidity

demands. While liquidity traders introduce noise that prevents the market maker from

perfectly inferring the value of η, thereby enabling an equilibrium in pure strategies, their

presence also hinders the interpretation of price as the true value of the asset even at the

limit. However, the fact that liquidity noise has mean zero allows us to at least comment on

its expectation.

Corollary 1. E[pt] = p0 +
[
1−

(
1
2

)t]
η and limt→∞ E[pt] = p0 + η.

The form of the error Z ′
t is not important from the perspective of interpreting the price

or its expectation. It will always introduce randomness that prevents the market price from

perfectly reflecting the underlying value of the asset, but will always be present for reasons

described above. This error does, however, take a convenient form.

Proposition 3. In the above equilibrium for which T ∈ N ∪ {∞} periods and each agent

knows their position t ≤ T , the error term Zt takes the form Zt = − 1
λt

∑t−1
i=1

(
1
2

)t−i
λizi

so that equilibrium demand for each period is xt = 1
2tλt

η − 1
λt

∑t−1
i=1

(
1
2

)t−i
λizi for t > 1.

Moreover pt = p0 +
[
1−

(
1
2

)t]
η +

∑t
i=1 λizi

(
1
2

)t−i
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As the formulation of Zt makes clear, each period noise from all previous periods becomes

less relevant to price. But even though the Zt follows a process in proportion to a geometric

sum there is always λtzt incorporated in price pt, preventing the price from converging to

the true value of the asset. Fortunately a metric that is often referenced as an indication of

an asset’s value is the moving average, and with good reason.

Proposition 4. In the above equilibrium for which T ∈ N ∪ {∞} periods and each agent

knows their position t ≤ T , plimT→∞
1
T

∑T
t=1 pt = p0 + η.

As this proposition shows, the price may not converge to the true value of the asset but

the moving average converges in probability. So in a probabilistic sense the market fully

incorporates the value η.

4 Introducing uncertainty

Now suppose agents face uncertainty over their position of movement, but suppose that

agents share a common prior belief over the order. We begin with the case of two agents.

4.1 Two agents

As above suppose investors invest in an asset that evolves according to an unobservable

process vt+1 = vt + ηt+1 but in different periods each receives the same signal η about the

process. Again there is a liquidity investor who demands zt ∼ N(0,Ω) independent of ηt.

In the case of two agents the common prior assumption provides that if agent 1 has

prior belief Pr1(F ) = γ1 of moving first then it anticipates that agent 2 has prior belief

Pr2(F ) = 1− γ1. The agent receives a signal η about the how the value of the asset evolves

but does not know the initial valuation and thus cannot infer if this valuation is already

incorporated in price. With two agents, each can either be first or second and each observes

a price p which may or may not incorporate the information η. Supposing p0 is the price

before information enters the market,

(i) If the agent is first then the observed price is pt = p0

(ii) If the agent is second then the observed price is pt = p0 + λt(yt + zt), where yt is the

demand of the first moving agent and zt the demand for the liquidity trader.

The difference between the first price pt and the second is that the second price already

incorporates information about the asset’s value from the first agent. Thus the remaining

profit left to the second mover is less because the price relative the the value of the asset is
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higher. Given that the agent has no prior information about the value of the asset it must

be assumed that p0 = E[v0]. Then agents solve

max
x

xE[vt+1 − pt+1] = max
x

xE[vt+1 − (pt + λt+1ωt+1)]

= max
x

x · γE[vt + ηt+1 − (p0 + λt+1ωt+1)]

+ max
x

x · (1− γ)E[vt + ηt+1 − (p0 + λt(yt + zt) + λt+1ωt+1)]

= max
x

x · γ(η − λt+1x)− x · (1− γ)(η − λt+1x− λtE[yt])

where yt is the expected quantity of the first mover in the event this agent is in fact choosing

second. The profit maximization problem then becomes maxx x · (η−λt+1x− (1−γ)λtE[y]).
Notice that while pt = p0 or pt = p0 − λtyt, the maximization function does not contain

the term pt. This is because the agent does not know price p0 or value v0, but on the

expectation the best guess is that the market sets price p0 = E[v0]. Then these two terms

cancel and the difference we are left with is that between the future valuation and current

price.

Proposition 5. For T = 2 periods and agents who do not know their position but have prior

beliefs γ1, γ2, and common prior γ1 = 1−γ2 of moving first, there exists a linear equilibrium

of the form pt = p0(1 − φt−1) + φt−1pt−1 + λtωt where p0 is the price before information η

entered the market, x1 = β1(γ1)η and x2 = β2(γ2)η with

β1(γ1) =

√
(1− φ1)Ω

φ1σ2
, β2(γ2) =

√
1− φ2

φ2(1− φ1)

λ1 =

√
φ1(1− φ1)σ2

Ω
λ2 =

√
φ2(1− φ2)(1− φ1)

and φ1φ2γ(1− γ)(φ1 − 1) = 4φ1 − φ2(1− γ)− 2

φ1φ2γ(1− γ)(φ2 − 1) = 4φ2 − φ1γ − 2

From this result we can see the manner in which information about the asset’s value

translates into movements in the price. In equilibrium, p2 = p0 + λ1φ2ω1 + λ2ω2. Then

E[p2] = p0 + λ1φ2β1η + λ2β2η = p0 + [φ2(1− φ1) + (1− φ2)]η

= p0 + (1− φ1φ2)η
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As the common prior γ1 increases,

each mover becomes less certain who

is first until uncertainty is maximized

when γ1 = γ2 = 1
2
. This min-

imum price represents the minimal

possible information content result-

ing from the perfectly informative

signal. As γ1 further increases, uncer-

tainty lessens and the other mover be-

comes more convinced of being first,

resulting in an increased willingness

to demand more of the financial as-

set.

4.2 T identical agents

We can generalize this case to one in which there are T agents, each receiving the signal η

in a different period t ≤ T and sharing a common prior over their position of movement. A

natural prior is uniform, where each agent believes that their probability of moving in period

t ≤ T is Pr(t) = 1
T
for all periods. Furthermore, each agent believes that all other agents

share this common prior.

As in the case of no uncertainty we will find a linear equilibrium in demand ωt. Now,

however, since agents do not know if the price they see is the original valuation or the price

after t−1 periods of agents acting on information η, they will not assign a unit value to pt−1.

They weight the previous price based on their beliefs Pr(t) of moving in every t and their

beliefs about other agents’ actions. To compensate for this, in equilibrium price at period t

will be a weight φ < 1 of the previous period price and current demand ωt.

To see why this is, consider the pricing decision of the market maker. As before, each

agent demands x = E[v0]+η−pt−1

2λ
but now, with equal probability pt−1 could have information

η incorporated in any number of periods t ≤ T − 1. Thus the agent will shade their demand

down by the expected amount of information already incorporated into the price. Each

period the market sets pt in order to estimate v0 + η. Then pt = E[v0 + η|βxt + zt] =

p0 +
1
β
E[βη|βη + zt] = p0 +

Ω(pt−1−p0)+βV ωt

Ω+β2V
so that pt = p0(1 − φ) + φpt−1 + λωt where

φ = Ω
Ω+β2V

and λ = βV
Ω+β2V

.

With this formulation price in each period is a φ discounted sum of previous demands

plus initial price. If the agent moves in the second period price is p1 = p0+λω1. If the agent

moves in the third period then price is p2 = p0+λω2+φλω1. Inductively if the agent moves
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in period t then t− 1 agents move before and pt−1 = p0 +
∑t−1

i=1 λφ
(t−1)−iωi. So to the agent,

without knowledge of initial value v0, pt−1 is a combination of demand in previous periods,

containing p0 = E[v0]. This gives rise to a linear equilibrium of the following form.

Proposition 6. For T ∈ N ∪ {∞} periods, if agents do not know their position but have

a uniform and common prior belief over t ≤ T then there exists a linear equilibrium of the

form pt = p0(1 − φ) + φpt−1 + λωt where p0 is the price before information η enters the

market and xt = βtη with

βt =
1
√
φ
, λ =

√
φ(1− φ), and φ = 1− φ(1− φT )

T (1− φ)

This equilibrium can be solved down to the variable φ which itself cannot be solved for

explicitly. Yet it still provides interesting insight. The most obvious result to note is that

this equilibrium does not depend on liquidity noise Ω. This comes from the fact that the

updated variance of η converges immediately as described above, so βλ need not include this

term. As the market maker gains information from demand each period, since the variance of

η does not change, noise introduced by the liquidity traders offers no additional information.

Equilibrium behavior for the informed agents also accords closely to what we would

expect. Since agents do not know which of the T positions they occupy when they choose

their investment strategies, they tend to behave more cautiously than in the case with no

uncertainty.

This figure compares the price for

each number of time periods in the

certain and uncertain cases, given

that the true value of η is 1 and

p0 = 0. As we can see comparing the

cases of certainty with uncertainty, as

the number of periods T increases the

information η is more quickly incor-

porated into the price of the asset in

the certain case. Indeed in the cer-

tain case information is integrated at

the geometric rate 1− 1
2

t
, while in the

uncertain case the rate is not quite as

fast.

While slower than in the case of certainty, we can say something about the rate of

convergence to the true value η as the following proposition describes.
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Proposition 7. In the above equilibrium for which T ∈ N ∪ {∞} and agents do not know

their position but have a uniform and common prior belief over t ≤ T , E[pt] = p0+ η(1−φt)

In the case of positional uncertainty, for every number of possible time periods the price

is lower than if position of movement were certain, but this price too converges at a (pseudo)

geometric rate of 1−φt, with φ as defined above. The difference is that the φ is higher than

the 1
2
of the certain case for all t, and in fact limt→∞ φ = 1. However, since price depends on

φt it is this term whose convergence determines the integration of signal η into the price as

the number of periods T increases. As the figure makes clear this term indeed does converge

to zero.

Proposition 8. In the above equilibrium for which T ∈ N ∪ {∞} and agents do not know

their position but have a uniform and common prior belief over t ≤ T , limT→∞ E[pt] = p0+η

and plimT→∞
1
T

∑T
t=1 pt = p0 + η.

As Proposition 7 describes we have an analogous limit result in the case of positional

uncertainty - albeit with a slower rate of convergence. This slower convergence reflects the

fact that symmetric agents are more cautious in acting on their signal as there may be up

to T − 1 periods of signal information already incorporated into the market price, making

the gains uncertain. However, as the number of periods increases, the effect each agent has

on equilibrium price by placing their optimal demand diminishes, so that demands in the

certain and uncertain case merge and information η is fully incorporated.

5 A notion of confidence

Now that we have investigated the informed investing environment with certain and uncertain

positions of movement, we can turn attention to how confidence plays a role in investment

decisions. In particular, we saw in the environments with and without certainty that as the

number of periods T increases price increased to the true value η of the asset. Furthermore

we saw that this convergence was slower in the case of positional uncertainty but hardly by

much; for T ≥ 40 the prices were barely distinguishable.

Now we introduce the notion of confidence and attempt to answer the same questions. In

particular, we would like to investigate in the presence of confidence over uncertain outcomes:

1. How does equilibrium price with confident agents compare to the case of no uncer-

tainty?

2. How does equilibrium price with confident agents compare to the case of uncertainty

with neutral agents possessing uniform priors over positions t ≤ T?
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3. As number of periods T grows large does price reflect the value η of the underlying

asset?

In order to begin to answer these questions we will need to introduce a notion of confi-

dence.

Definition 1. In a T period investment setting, an agent is neutral in terms of confidence

if their belief of moving in period t, Pr(t) = µt, is equal for all t so that µt =
1
T
.

Given this definition, in the uncertain case previously analyzed all agents were neutral.

The concept of non-neutrality in terms of confidence takes the obvious definition.

Definition 2. In a T period investment setting, an agent is non-neutral in terms of confi-

dence if they are not confidence neutral. That is, if for some t1, t2 µt1 ̸= µt2.

There are infinitely many ways in which an agent can stray from confidence neutrality.

In order to narrow the scope of this definition, we will restrict attention to confidence over

the first period. An agent will be said to be overconfident if she overweighs the probability

of moving in the first period, and underconfident if she underweighs this probability.

Definition 3. In a T period investment setting, an agent who has beliefs µ1 =
γ
T
, µt =

T−γ
T (T−1)

for t ≥ 2 is overconfident if γ > 1 and underconfident if γ < 1.

In the scope of this definition it is the belief of moving first that determines confidence.

The probability of receiving the signal η in any other period is then spread uniformly across

all other periods.

5.1 Confidence: The mindful investor

With these definitions regarding the confidence of investors over their uncertain position

of movement we can define the equilibrium. Of course equilibrium behavior will depend

on beliefs of other agents as well. In particular we begin with agents who are non-neutral

(γ ̸= 1) and take into account the non-neutrality of other agents. In this way we can think

of these agents as “mindful” of their departure from neutrality and that other agents make

the same departure. The market maker, unaware that investors behave anything other than

fully rational, will set price exactly as before.

Proposition 9. In a T ∈ N ∪ {∞} period investment setting, if informed agents do not

know their position but hold a common belief µ1 = γ
T
, uniform µt =

T−γ
T (T−1)

for t > 2 then
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there exists a linear equilibrium of the form pt = p0(1 − φ) + φpt−1 + λωt where p0 is the

price before information η enters the market and xt = βη with

β =
(1− φ)

λ
T−1

[(T − 1)− (2φ− 1)(γ − 1)]
, λ =

√
φ(1− φ), and φ = 1− φ(1− φT )

T (1− φ)

As the parameter β makes clear γ has a predictable effect on demand for the asset.

Agents tend to demand more (less) if γ > 1 (γ < 1) as is easily seen in the denominator

into which γ enters negatively. When γ = 1 we return to the case of neutral uncertainty

described above. Having no way to know or reason to suspect non-neutrality the market

maker behaves as in the case of neutral agents. If the market maker were able to compensate

for non-neutrality the price would more closely resemble that of the neutral case.

The figures below depict the movements of price as number of periods increases comparing

the neutral case to the over/underconfident case when the true value of η is 1 and p0 = 1.

The figure on the left shows that in the case of overconfidence (γ = 2 here) the market price

is always higher than in the confidence neutral case. Investors underweight the possibility

that the price already contains information about the value η and thus demand more than

they otherwise would. In fact as the graph shows, for early periods the price actually exceeds

the value of η. With underconfidence we see even more caution than in the case of neutral

uncertainty with the underconfident agent even further believing that the price already

contains information about the value of the asset.

As the figures below demonstrate, comparing the results to initial market with no uncer-

tainty paints an even more dramatic picture. In the overconfident case with just a few periods

the price surpasses the geometric pricing schedule of no uncertainty. The underconfident case

takes appreciably longer to integrate information about value into the price.
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From these figures it does seem like eventually given enough periods the price does

integrate the true value of η; it appears that after 150 periods of investment the value is

almost completely incorporated. In fact as with the cases of no uncertainty and neutral

uncertainty we can say this unambiguously.

Proposition 10. For a T ∈ N ∪ {∞} period investment setting, if informed agents hold a

common belief Pr(t = 1) = γ
T
, uniform Pr(t) = T−γ

T (T−1)
for T > 2, limT→∞ E[pt] = p0 + η and

plimT→∞
1
T

∑T
t=1 pt = p0 + η.

This proposition confirms that even if over(under)confident agents over(under)shoot the

price for small T , for a large enough T all information about the value η is incorporated into

the market price.

5.2 Confidence: The myopic investor

In the previous section we made the assumption that the non-neutral agent was “mindful”

in the sense of being aware other agents share the same confidence bias. But it is at least

as likely - if not more likely - that the agent is so confident that she believes she is the only

agent with the informational advantage that increases (decreases) her likelihood of moving

first. This would mean that in solving the maximization problem, it is assumed that other

agents behave as if they were neutral investors, and the confident investor would dismiss the

possibility of others also biasing their belief of moving first.

Proposition 11. In a T ∈ N ∪ {∞} period investment setting, if informed agents do not

know their position but believe µ1 =
γ
T
, µt =

T−γ
T (T−1)

for t > 2 and believe other agents have

a uniform prior Pr(t) = 1
T

for all t ≤ T then there exists a linear equilibrium of the form

pt = p0(1 − φ) + φpt−1 + λωt where p0 is the price before information η enters the market
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and xt = βtη with

β =
1

λ

[
(1− φ) +

(γ − 1)(2φ− 1)

2(T − 1)

]
, λ =

√
φ(1− φ), and φ = 1− φ(1− φT )

T (1− φ)

Again the market maker sets price as in the neutral case having no information about

the confidence bias of investors. As we have seen, even knowing the existence and magnitude

of a bias is insufficient because of they many ways investors can operationalize their bias,

mindfully and myopically among them.

In the following figures we see the comparison of naive confidence and the neutral and

certain cases with the true value of η = 1 and p0 = 0 as in all previous analyses. We see

again that demand is increasing in confidence γ which appears positively in both the β and

δ terms. Clearly as γ → 1 this approaches our previous equilibrium of confidence neutrality.

The magnitude of this difference, however, is difficult to interpret from the first order con-

ditions.

As the above figures show, we have the same pattern of the overconfident investor (left)

investing so much more than in the neutral case that in very few periods price exceeds the

true value of η = 1. Now, however, convergence of price to the true value of the asset

seems questionable. Even after 200 periods the price of the over(under)confident investor

over(under) estimates the value by about 3 percent; p200 = 1.032 (p200 = 0.971).
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Despite the persistence in price distortion the bias introduces, we can in fact establish a

limit result.

Proposition 12. In the above equilibrium for which T ∈ N ∪ {∞} and agents hold belief

Pr(t = 1) = γ
T
, uniform Pr(t) = T−γ

T (T−1)
for T > 2, and believe other agents hold a uniform

prior Pr(t) = 1
T
for all t ≤ T , limT→∞ E[pt] = p0 + η and plimT→∞

1
T

∑T
t=1 pt = p0 + η.

While this limit result confirms that even in the case of myopic confidence we have that

the asset price reflects its true value this convergence is extremely slow. This is of course

due to the weighting of µ1 that causes the agent to under/overestimate the probability that

price already contains information about the value η from other agents. But even more than

in the case of the mindfully confident investor, as more time periods/investors are added,

the fact that each investor does not account for others’ confidence γ prevents the bias from

being spread over more and more periods as efficiently

The above figures show all of the cases together. As can be seen by the comparison,

although mindful confidence suffers some pathology for small T , after a relatively short time
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it converges to the certain and neutral cases. The cases of myopic confidence, however, seem

to take their time. While they reach η ± 3% in relatively short order, with increasing time

periods T this difference does not seem to relent. This is due to the slow convergence of

φ → 1. While all other prices depended on the convergence of φT → 0, the convergence of

this series depends on the convergence of φ. This is, of course, a direct result of agents not

considering the confidence biases of other agents.

6 Concluding remarks

In a investment setting with informed investors, liquidity traders, and a market maker seeking

to match the unknown value of an asset there are clear predictions in the case of certainty.

Agents who face no uncertainty - either about the value of the asset or the number of

investors who have acted before them - maximize profit in a linear equilibrium by halving

the remaining value, leading to a rapid geometric convergence of the price to the asset’s

value. A generalization of this model wherein agents do not know the period in which they

receive the informative signal, and as such do not know in which period they choose their

demand, demonstrates a similar pattern that is slightly blunted by the uncertainty of how

many investors had previously incorporated this profit relevant information into the price.

The introduction of confidence into this framework enriched the environment of uncer-

tainty, allowing agents to differ in how they responded to not knowing the period when they

receive the signal or how stale the information might be. Overconfident agents overweigh

the probability of being first, leading to more demand than is profitable even in the case of

certainty. This is reflected in a price that is higher than if the agents were neutral in terms of

confidence, and possibly even higher than the value of the asset. Underconfident investors,

conversely, tended to demand less of the asset than was profitable, leading to a price that

lagged every other case and took longer to converge to the true value.

One operationalization of confidence - “mindful” confidence - led to a higher/lower price

than was otherwise profitable, and yet as the number of periods grew large the price con-

verged to the value of the asset rather quickly. This result is appealing in that confidence

biases of agents are not too disruptive to the information value of asset price given a suit-

ably large number of periods. And yet, while the concept of mindful confidence allowed for

agents’ beliefs to take into account that other agents share similar biases, the idea of being

concurrently biased about one’s own beliefs and mindful of others is in a sense contradictory.

An agent may be overconfident that they are particularly shrewd observers of the financial

news, picking up on value-relevant signals before others can catch on. But if they take into

account that others act in the same way is it true that they are more adept at interpreting
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information? They may maintain an edge over some investors, but if they plan investment

strategies based on others taking the same factors in mind and undertaking the same line of

iterative induction, the belief that these investors are as näıve as all other seems to break

down.

Out of this contradiction arose the notion of “myopic” confidence whereby investors

are confident that they move first and discount the possibility that other investors share

confidence biases. This concept conforms more to our idea of what it means to be too

confident. In the setting of myopic confidence we found an even more exaggerated departure

in demand behavior and price as a measure of value. Even though the price of the asset in

this case converges to the true value in the limit it does so extremely slowly. In fact given a

200 period time horizon we saw the asset price still failed to converge.

In each of these investment environments the asset value was perfectly known (granted,

by different investors at different times) and this value never changes. It may be of comfort

to the informational value of price that in all but the most extreme case of myopic confidence

price converges quickly to the true value. But of course in a more dynamic setting the value

is ever changing and signals are constantly being disseminated. If any of the above models

were to be repeated every 5-10 periods the informational value at the limit would never have

an opportunity to realize, leading to a potentially dramatic departure between the price of

an asset and its value. Even if the effects of confidence did not accrue but canceled as a

result of value fluctuation this still leaves the market with an undesirable level of volatility

that reduces the appeal of investment and the ability of the market operate efficiently.
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A1. Appendix

Proof of Proposition 1. Conjecture a linear price equilibrium of the form pt = pt−1+λtωt

and consider the first agent’s optimization problem. The anticipated market price is p1 =

p0 + λ1ω1 so the agent solves

max
x1

x1E1[v0 + η − p1] = x1(η − E1[λ1ω1]) = x1(η − λ1x1)

which yields the optimal quantity x1 =
η

2λ1
.

By induction, for a t > 1 conjecture that the optimal investment given λt is xt =
1

2tλt
η+Zt

with Zt ∼ N(0, Vt). Then the agent in period t+ 1 solves

max
xt+1

xt+1Et+1[v0 + η − pt+1] = max
xt+1

xt+1Et+1

[
v0 + η −

(
p0 +

t∑
i=1

λiωi + λt+1ωt+1

)]
since E[p0] = E[v0]. Given the fact that Et+1[ωt+1] = xt+1, this yields equilibrium xt+1 =
η−

∑t
i=1 λiωi

2λt+1
. By the induction assumption this holds for all preceding t so that xt =

η−
∑t−1

i=1 λiωi

2λt

and 2λtxt = η −
∑t−1

i=1 λiωi. Also notice that

xt+1 =
η −

∑t
i=1 λiωi

2λt+1

=
η −

∑t−1
i=1 λiωi − λtωt

2λt+1

=
η −

∑t−1
i=1 λiωi − λtxt − λtzt

2λt+1

=
2λtxt − λtxt − λtzt

2λt+1

=
λtxt − λtzt

2λt+1

By the induction assumption, λtxt =
1
2t
η + λtZt and

xt+1 =

(
1

2λt+1

)[
1

2t
η + λtZt − λtzt

]
=

(
1

λt+1

)[
1

2t+1
η +

1

2
λtZt −

1

2
λtzt

]
so that xt+1 = 1

2t+1λt+1
η + Zt+1 where Zt+1 = λt(Zt−zt)

2λt+1
∼ N(0,

λ2
t (Vt+Ω)

4λ2
t+1

). Letting Vt+1 =
λ2
t (Vt+Ω)

4λ2
t+1

gives Zt+1 ∼ N(0, Vt+1). Then xt+1 = βt+1η + Zt+1 where βt+1 = 1
2t+1λt+1

Thus by

induction this holds for all t ≤ T .

Now consider the problem of the market maker. In each period the market maker sets

the price in order to match the value of the asset. That is pt = E[v0 + η|ωt, ht] where again

ωt = xt + zt is market demand, and ht is the historical series of market demand. Then in

period 1

p1 = E[v0 + η|ω1] = p0 + E[η|β1η + z1] = p0 +
1

β1

E[β1η|β1η + z1]

= p0 +
β1σ

2

β2
1σ

2 + Ω
ω1
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and so λ1 =
β1σ2

β2
1σ

2+Ω
. Moreover since β1 =

1
2λ1

then

λ1 =
1

2λ1
σ2(

1
2λ1

)2
σ2 + Ω

=
σ2(

1
2λ1

)
σ2 + 2Ωλ1

2σ2 = σ2 + 4Ωλ2
1

λ1 =

√
σ2

4Ω

so that

p1 = E[v0 + η|ω1] = p0 +

(√
σ2

4Ω

)
ω1

and the variance of the estimate of η is

V1 =
β2
1σ

2Ω

β2
1σ

2 + Ω
=

( 1
2λ1

)2σ2Ω

( 1
2λ1

)2σ2 + Ω
=

σ2Ω

σ2 + 4λ2
1Ω

which reduces to V1 =
Ω
2
.

Consider a general t > 1. The market maker again sets price to match the expected value

of the asset so that

pt = E[v0 + η|ωt, ht] = E[v0 + η|xt + zt, ht] = E

[
v0 + η

∣∣∣∣∣ 1

2λt

(
η −

t∑
i=1

λiωi

)
+ zt, ht

]

= E
[
v0 + η

∣∣∣∣ 1

2λt

(η − (pt−1 − p0)) + zt, ht

]
= E

[
v0 + η

∣∣∣∣ 1

2λt

(v0 + η − pt−1) + zt, ht

]
= 2λtE

[
1

2λt

(v0 + η − pt−1)

∣∣∣∣ 1

2λt

(v0 + η − pt−1) + zt, ht

]
+ pt−1

Since pt−t was the previous expectation of v0 + η, 1
2λt

(v0 + η − pt−1) ∼ N(0,
(

1
2λt

)2
Vt−1)

where Vt−1 is the previous variance estimate of η. Suppose that Vt−1 =
Ω
2
. If Vt =

Ω
2
as well

then by induction this is the variance of η for all t > 1. Then the above expectation becomes

pt = pt−1 + 2λt

(
1

2λt

)2
Ω
2(

1
2λt

)2
Ω
2
+ Ω

ωt = pt−1 +

(
1

2λt

)
(

1
2λt

)2
+ 2

ωt = pt−1 +
1(

1
2λt

)
+ 4λt

ωt

Then

λt =
1(

1
2λt

)
+ 4λt

⇒ 8λ2
t + 1 = 2
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so that λt =
1√
8
. Also,

Vt =

(
1

2λt

)2
Vt−1Ω(

1
2λt

)2
Vt−1 + Ω

=

(
1

2λt

)2
Ω
2
Ω(

1
2λt

)2
Ω
2
+ Ω

=

(
8
4

)
1
2
Ω(

8
4

)
1
2
+ 1

=
Ω

2

and by induction Vt =
Ω
2
for all t > 1.

Since it has been shown that βt = 1
2tλt

, then by the formulation of λt it holds that

β1 =
√

Ω
σ2 and βt =

√
2

2t−1 for t > 1 as desired.

Proof of Proposition 2. Lastly, pt = pt−1 + λtωt so inductively

pt = p0 +
t∑

i=1

λiωi = p0 +
t∑

i=1

λi(xi + zi) = p0 +
t∑

i=1

λi

(
1

2iλi

η + Zi

)
+ λizi

= p0 +
t∑

i=1

(
1

2i

)
η +

t∑
i=1

λi(Zi + zi) = p0 +

[
1−

(
1

2

)t
]
η + Z ′

t

where Z ′
t is a linear combination of independently normally distributed random variables

with mean zero so Z ′
t ∼ N(0, V ′

t )

Proof of Lemma 1. Suppose the agent demands xt = βtη where βt = y
λt
. The market

maker sets price so that pt = E[vt|βtη + zt] =
(

Vt−1βt

Vt−1β2
t+Ω

)
ωt, where Vt−1 is the market

maker’s prior belief of the informative signal’s variance. Then

βtλt =
β2
t Vt−1

β2
t Vt−1 + Ω

= y

This yields β2
t Vt−1 = yΩ

1−y
. When the market maker updates variance of the agent’s signal

given that liquidity noise zt ∼ N(0,Ω),

Vt =
β2
t Vt−1Ω

β2
t Vt−1 + Ω

=

yΩ
1−y

Ω
yΩ
1−y

+ Ω
=

yΩ2

yΩ + (1− y)Ω
= yΩ

Since this was independent of the value Vt−1, variance will be Vt = yΩ for every period with

only the possible exception of V0 before variance can be updated from the prior belief.

Proof of Proposition 3. The previous proof shows that x1 =
η

2λ1
and the optimal quan-

tity for the agent in period t is xt = λt−1xt−1−λt−1zt−1

2λt
. Then for t = 2, x2 = λ1x1−λ1z1

2λ2
=

η
22λ2

− 1
λ2

(
1
2

)
λ1zt so that β2 = 1

4λ2
and Z2 = − 1

λ2

∑2−1
i=1

(
1
2

)t−i
λizi so the result holds for

t = 2.
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By induction, suppose that xt = 1
2tλt

η − 1
λt

∑t−1
i=1

(
1
2

)t−i
λizi for t ≥ 2. Then λtxt =

1
2t
η −

∑t−1
i=1

(
1
2

)t−i
λizi and given that xt+1 =

λtxt−λtzt
2λt+1

,

xt+1 =

(
1

2λt+1

)[(
1

2t
η −

t−1∑
i=1

(
1

2

)t−i

λizi

)
− λtzt

]

=

(
1

λt+1

)[
1

2t+1
η −

t−1∑
i=1

(
1

2

)t+1−i

λizi −
1

2
λtzt

]

=

(
1

λt+1

)[
1

2t+1
η −

t∑
i=1

(
1

2

)t+1−i

λizi

]

=

(
1

λt+1

) 1

2t+1
η −

(t+1)−1∑
i=1

(
1

2

)(t+1)−i

λizi


so that xt+1 =

1
2t+1λt+1

η− 1
λt+1

∑(t+1)−1
i=1

(
1
2

)(t+1)−i
λizi. Thus Zt+1 = − 1

λt+1

∑(t+1)−1
i=1

(
1
2

)(t+1)−i
λizi

and by induction the result holds for all t ≤ T .

As noted in proposition 2,

pt = p0 +

[
1−

(
1

2

)t
]
η + Z ′

t

where Zt′ =
∑t

i=2 λiZi +
∑t

i=1 λizi. From the above Zi = − 1
λi

∑i−1
j=1

(
1
2

)i−j
λjzj so that

t∑
i=1

λiZi = −
t∑

i=2

i−1∑
j=1

(
1

2

)i−j

λjzj = −
t−1∑
j=1

t∑
i=j+1

(
1

2

)i−j

λjzj = −
t−1∑
j=1

λjzj

t−j∑
i=1

(
1

2

)i

= −
t−1∑
j=1

λjzj

[
1−

(
1

2

)t−j
]

Together,

t∑
i=2

λiZi +
t∑

i=1

λizi =
t∑

i=1

λizi −
t−1∑
j=1

λjzj

[
1−

(
1

2

)t−j
]
=

t∑
i=1

λizi −
t−1∑
i=1

λizi

[
1−

(
1

2

)t−i
]

= λtzt +
t−1∑
i=1

λizi

(
1

2

)t−i

=
t∑

i=1

λizi

(
1

2

)t−i

Then Z ′
t =

∑t
i=1 λizi

(
1
2

)t−i
and pt = p0 +

[
1−

(
1
2

)t]
η +

∑t
i=1 λizi

(
1
2

)t−i
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Proof of Proposition 4. Define the partial series XT = 1
T

∑T
t=1 pt.

XT =
1

T

T∑
t=1

pt =
1

T

T∑
t=1

[
p0 +

(
1−

(
1

2

)t
)
η +

t∑
i=1

λizi

(
1

2

)t−i
]

= p0 + η − η

T

(
1−

(
1

2

)T
)

+
1

T

T∑
t=1

t∑
i=1

λizi

(
1

2

)t−i

For each T variance of XT (given that the zi are independent) is

V ar(XT ) = E

( 1

T

T∑
t=1

t∑
i=1

λizi

(
1

2

)t−i
)2
 =

1

T 2

Ω

8

T∑
t=1

t∑
i=1

(
1

2

)2(t−i)

=
Ω

8T 2

T∑
t=1

t−1∑
j=0

(
1

4

)j

=
Ω

8T 2

T∑
t=1


(
1−

(
1
4

)t)
1− 1

4


=

Ω

6T 2

T∑
t=1

(
1−

(
1

4

)t
)

=
Ω

6T
− Ω

6T 2

(1

4

) (1− (1
4

)t)
1− 1

4


=

Ω

6T
− Ω

18T 2

(
1−

(
1

4

)T
)

=
Ω

6T
− Ω

18T 2
+

Ω

18T 2

(
1

4

)T

Let ε > 0. By Markov’s inequality,

Pr(|XT − (p0 + η)| ≥ ε) ≤
E
[(

p0 + η − η
T

(
1−

(
1
2

)T)
+ 1

T

∑T
t=1

∑t
i=1 λizi

(
1
2

)t−i − (p0 + η)
)2]

ε2

=
1

ε2


[
η

T

(
1−

(
1

2

)T
)]2

+ E

( 1

T

T∑
t=1

t∑
i=1

λizi

(
1

2

)t−i
)2


=

(
η
T

)2 (
1−

(
1
2

)T)2
+ Ω

6T
− Ω

18T 2 +
Ω

18T 2

(
1
4

)T
ε2

so that

Pr(|XT − (p0 + η)| < ε) ≤ 1−

(
η
T

)2 (
1−

(
1
2

)T)2
+ Ω

6T
− Ω

18T 2 +
Ω

18T 2

(
1
4

)T
ε2

−→ 1 as T → ∞

so that plimT→∞
1
T

∑T
t=1 pt = p0 + η.

Note that λ2
1 = σ2

4Ω
. This was ignored for expositional clarity because V ar( 1

T
λ1z1) =

σ2

4T 2 → 0 ⇐⇒ Ω
8T 2 → 0.
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Proof of Proposition 5. Conjecture a linear price equilibrium of the form pt = p0(1 −
φt−1) + φt−1pt−1 + λtωt for t > 1 where p0 is the price before information η entered the

market. The agent seeks to maximize

xiE[vt − pt] = xiE[v0 + η − p0(1− φt)− φtpt−1 − λiωt]

= xi (E[v0] + η − p0(1− φt)− φtE[pt]− λixi)

Which is maximized for xi =
φtp0+η−φtE[pt−1]

2λi
since p0 = E[v0]. If the agent moves in the first

period then price is p0 while if in the second period price is p1 = p0+λ1ω1. With a prior belief

of moving first Pri(F ) = γi, the expected price is pt−1 = γip0+(1− γi)p1 = p0+(1− γi)λωj.

For agent i, the expected demand of any other period is E[ωj] = E[xj], so that demand can

be written as

xi =
η + φj(p0 − pt−1)

2λi

=
η − φj(1− γi)λjE[xj]

2λi

=
η

2λi

− φj(1− γi)λjE[xj]

2λi

and as a result of the common prior belief expected quantity E[xj] is

E[xj] =
η

2λj

− φiγiλi

2λj

xi

Thus in equilibrium

xi =
2− φj(1− γi)

λi[4− φiφjγi(1− γi)]
η and E[xj] =

2− φiγi
λj[4− φiφjγi(1− γi)]

η

so that

βi(γi) =
2− φj(1− γi)

λi[4− φiφjγi(1− γi)]
and Ei[βj(γj)] =

2− φiγi
λj[4− φiφjγi(1− γi)]

The market maker sets price so that pt = E[vt|ωt, ht] so

pt = E[vt|ωt, ht] = E[v0 + η|ωt, ht] = p0 + E[η|ωt, ht] = p0 +
1

βt

E[βtη|βtη + zt, ht]

Recall that zt ∼ N(0,Ω) and the prior belief on the value is η ∼ N(pt−1 − p0, Vt−1). Then

βtη ∼ N(βt(pt−1 − p0), β
2
t Vt−1) and

pt = p0 +
Ωβt(pt−1 − p0) + β2

t Vt−1ωt

βt(Ω + β2
t Vt−1)

= p0 +
Ω(pt−1 − p0) + βtVt−1ωt

Ω + β2
t Vt−1
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so that

λt =
βtVt−1

Ω + β2
t Vt−1

and φt =
Ω

Ω+ β2
t Vt−1

Together these imply that βtλt = 1− φt =
β2
t Vt−1

Ω+β2
t Vt−1

, this solves to β2
t = (1−φt)Ω

Vt−1φt
.

Since the prior belief of the market maker is determined by the distribution of η, for t = 1

Vt−1 = σ2. Notice also that for any Vt−1 updated variance is

Vt =
β2
t Vt−1Ω

β2
t Vt−1 + Ω

=

(
(1−φt)Ω

φt

)
Ω

(1−φt)Ω
φt

+ Ω
=

(1− φt)Ω

(1− φt) + φt

= (1− φt)Ω

Then given that β2
t = (1−φt)Ω

Vt−1φt
, substitution for V0 = σ2 and V1 = (1− φ1)Ω gives that

β1 =

√
(1− φ1)Ω

φ1σ2
and β2 =

√
(1− φ2)

φ2(1− φ1)

Substitution into the relationship λt =
βtVt−1

Ω+β2
t Vt−1

gives

λ1 =

√
φ1(1− φ1)σ2

Ω
λ2 =

√
φ2(1− φ2)(1− φ1)

From the definition of βt above for i, j, we can also express this as βiλi =
2−φ(1−γi)

[4−φ2γi(1−γi)]

1− φi =
2− φj(1− γi)

[4− φiφjγi(1− γi)]

Given the common prior assumption that γ1 = 1 − γ2 = γ, we conclude with the two

remaining equilibrium conditions

φ1φ2γ(1− γ)(φ1 − 1) = 4φ1 − φ2(1− γ)− 2

φ1φ2γ(1− γ)(φ2 − 1) = 4φ2 − φ1γ − 2

Proof of Proposition 6. Conjecture a linear price equilibrium of the form pt = p0(1 −
φt−1) + φt−1pt−1 + λtωt where p0 is the price before information η entered the market. The

market maker sets price such that pt = E[vt|ωt]. Then

pt = E[vt|ωt] = E[v0 + η|xt + zt] = p0 + E[η|βtη + zt] = p0 +
1

βt

E[βtη|βtη + zt]
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Recall that zt ∼ N(0,Ω) and the prior belief on the value is η ∼ N(pt−1 − p0, Vt−1). Then

βtη ∼ N(βt(pt−1 − p0), β
2
t Vt−1) and

pt = p0 +
Ωβt(pt−1 − p0) + β2

t Vt−1ωt

βt(Ω + β2
t Vt−1)

= p0 +
Ω(pt−1 − p0) + βtVt−1ωt

Ω + β2
t Vt−1

so that

λt =
βtVt−1

Ω + β2
t Vt−1

and φt =
Ω

Ω+ β2
t Vt−1

Together these imply that βtλt = 1 − φt =
β2
t Vt−1

Ω+β2
t Vt−1

, this solves to β2
t = (1−φt)Ω

Vt−1φt
. Since

β2
t Vt−1 =

(1−φt)Ω
φt

, then for any Vt−1 updated variance is

Vt =
β2
t Vt−1Ω

β2
t Vt−1 + Ω

=

(
(1−φt)Ω

φt

)
Ω

(1−φt)Ω
φt

+ Ω
=

(1− φt)Ω

(1− φt) + φt

= (1− φt)Ω

Then given that β2
t = (1−φt)Ω

Vt−1φt
and Vt−1 = (1− φt−1)Ω we have the following.

βt =

√
(1− φt)

φt(1− φt−1)

Given the form of βt

λt =

√
(1−φt)

φt(1−φt−1)
Ω(1− φt−1)

Ω +
(

(1−φt)
φt(1−φt−1)

)
Ω(1− φt−1)

=

√
φt(1− φt)(1− φt−1)

φt + 1− φt

=
√

φt(1− φt)(1− φt−1)

The agent seeks to maximize

xE[vt − pt] = xE[v0 + η − p0(1− φt)− φtpt−1 − λtωt]

= x (E[v0] + η − E[p0(1− φt)− φtpt−1]− λtx)

Which is maximized for x = η−E[φt(pt−1−p0)]
2λt

since E[p0] = E[v0]. If the agent moves in the

first period the prevailing price is p0. If the agent moves in the second period the prevailing

price is p1 = p0 + λ1ω1. If the agent moves in the third period the prevailing price is

p2 = p0 + φ2λ1ω1 + λ2ω2. Inductively if the agent moves in period t then t− 1 agents move

before and

pt−1 = p0 + λt−1ωt−1 +
t−1∑
i=2

λt−iωt−i

i−1∏
j=1

φt−j
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If there are T periods and each agent has the belief µt that they are moving in period t

and since ωt = xt + zt and zt are independently distributed with zero mean, ωt = xt is the

expectation for each period. Then

E[φt(pt−1 − p0)] =
T∑
t=1

µtEt[φt(pt−1 − p0)] =
T∑
t=2

µt

(
t−1∑
i=1

λt−ixt−i

i−1∏
j=0

φt−j

)

where the outer summation starts from t = 2 because when t = 1 the agent moves in the first

period and there is no previous demand (e.g. pt−1 = p0). Demand can then be expressed as

xt =
1

2λt

[
η −

T∑
t=2

µt

(
t−1∑
i=1

λt−ixt−i

i−1∏
j=0

φt−j

)]

Imposing agents’ uniform belief over their period of movement, µt =
1
T
for all t and demand

reduces to

xt =
1

2λt

[
η −

T∑
t=2

1

T

(
t−1∑
i=1

λt−ix
i−1∏
j=0

φt−j

)]

Given the conjecture of a linear equilibrium, xt = βtη and since
∑T

t=2
1
T

(∑t−1
i=1 λt−ix

∏i−1
j=0 φt−j

)
is the same for all xt, the above implies that

βtλt =
1

2η

[
η −

T∑
t=2

1

T

(
t−1∑
i=1

λt−ix
i−1∏
j=0

φt−j

)]

so that βtλt = βt+1λt+1 for all t. Given that βtλt = 1−φt, this also implies that φt = φt+1 = φ

for all t. Demand then becomes

x =
1

2λ

[
η −

T∑
t=2

1

T

t−1∑
i=1

λφt−ix

]
=

1

2λ

[
η − λx

T

T∑
t=2

t−1∑
i=1

φt−i

]
Since Ω > 0, by the definition above φ ∈ (0, 1]. Suppose that φ = 1. Demand reduces to

x =
1

2λ

[
η − λx

T

T∑
t=2

t−1∑
i=1

1

]
=

1

2λ

[
η − λx

T

(
1

2
T (T − 2)

)]
=

1

2λ

[
η − λx

2
(T − 2)

]
which simplifies to

x =
2η

λ[T + 2]
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Then by the definition of λ above,

βλ =
2

T + 2
=

β2V

Ω + β2V

which implies β2V = 2Ω
T
. Then from the definition of φ,

φ =
Ω

Ω+ β2V
=

Ω

Ω+ 2Ω
T

=
T

T + 2
< 1

This contradiction shows that φ ∈ (0, 1). Then demand from above reduces to

x =
1

2λ

[
η −

(
λxφ

T

)
T (1− φ)− (1− φT )

(1− φ)2

]
=

η

2λ
− xφ

2

(
1

1− φ
− (1− φT )

T (1− φ)2

)
which simplifies to

x =
(1− φ)η

λ
[
(2− φ)− φ(1−φT )

T (1−φ)

]
For notational convenience let εT = φ(1−φT )

T (1−φ)
. Then β = 1−φ

λ[(2−φ)−εT ]
and

βλ =
1− φ

[(2− φ)− εT ]
= 1− φ

which implies εT = 1−φ. Then given that φ is constant, β and λ above can be reduced and

the equilibrium can be characterized as

βt =
1
√
φ
, λ =

√
φ(1− φ), and φ = 1− φ(1− φT )

T (1− φ)

Proof of Proposition 7. From the above the price can be expanded as

pt = (1− φ)p0 + λωt + φpt−1 = (1− φ)p0 + φp0 +
t∑

i=1

φt−iλωt = p0 +
t∑

i=1

φt−iλ(x+ zt)

= p0 +
t∑

i=1

φt−iλx+
t∑

i=1

φt−iλzt = p0 + λx

t−1∑
j=0

φj +
t∑

i=1

φt−iλzt

= p0 + λx
1− φt

1− φ
+

t∑
i=1

φt−iλzt = p0 + λβη
1− φt

1− φ
+

t∑
i=1

φt−iλzt

= p0 + (1− φ)η
1− φt

1− φ
+

t∑
i=1

φt−iλzt = p0 + (1− φT )η +
t∑

i=1

φt−iλzt

and so E[pt] = p0 + (1− φT )η.
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Lemma 2. If x, φ ∈ (0, 1) and limt→∞ xt = limt→∞ φt = p for some p ∈ (0, 1), then

limt→∞ t(1− φ)2 = limt→∞ t(1− x)2 if such a limit exists.

Proof. Let ε > 0 small enough so 0 < p − ε < p + ε < 1 and choose T ∈ N such that

t ≥ T implies both p − ε < xt < p + ε and p − ε < xt < p + ε. Then (p − ε)1/t < x <

(p+ ε)1/t, (p− ε)1/t < φ < (p+ ε)1/t, and moreover |φ− x| < |(p+ ε)1/t − (p− ε)1/t|. Then

|t(1− φ)2 − t(1− x)2| = t|φ2 − x2 − 2(φ− x)| = t|(φ− x)((φ+ x)− 2)|
< 4t|φ− x| < 4t|(p+ ε)1/t − (p− ε)1/t|

Since this applies for all t ≥ T it will also apply in the limit. Note that

d

dt
kc/t =

d

dt
exp

{c
t
ln(k)

}
= exp

{c
t
ln(k)

} −c

t2
ln(k)

= − c

t2
ln(k)kc/t

Then using L’Hôpital’s Rule

|t(1− φ)2 − t(1− x)2| < lim
t→∞

4t|(p+ ε)1/t − (p− ε)1/t| = lim
t→∞

4|(p+ ε)1/t − (p− ε)1/t|
1
t

= lim
t→∞

4| − 1
t2
ln(p+ ε)(p+ ε)1/t + 1

t2
ln(p− ε)(p− ε)1/t|

−1
t2

= lim
t→∞

4| ln(p+ ε)(p+ ε)1/t − ln(p− ε)(p− ε)1/t|

= 4 ln

(
p+ ε

p− ε

)
since both (p− ε)t and (p + ε)t converge to 1. For any δ > 0 letting ε < p(exp{δ/4}−1)

exp{δ/4}+1
yields

the result that |t(1−φ)2 − t(1− x)2| < δ and thus limt→∞ t(1−φ)2 = limt→∞ t(1− x)2.

Lemma 3. In equilibrium, φ implicitly defined by 1− φ = φ(1−φT )
T (1−φ)

must converge to 1.

Proof. In equilibrium φ = Ω
Ω+β2V

so φ ∈ (0, 1). If limT→∞ φ = p ∈ [0, 1) then φT → 0 and

1− φ = φ(1−φT )
T (1−φ)

→ 0 so φ → 1. Thus it must be that φ → 1.

Corollary 2. In equilibrium, εT = φ(1−φ)
T (1−φ)

must converge to 0.

Lemma 4. For the above where 1− φ = φ(1−φT )
T (1−φ)

, limT→∞ φT = 0.

Proof. Since φ ∈ (0, 1), limT→∞ φT ∈ [0, 1]. Suppose the series converges to some number

inside the interval so limT→∞ φT = p ∈ (0, 1). By definition (1− φ) = φ(1−φT )
T (1−φ)

so that

lim
T→∞

T (1− φ)2 = lim
T→∞

φ(1− φT ) = 1− p
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Consider x = p1/T . Clearly xT converges to p and since p ∈ (0, 1) limT→∞ x = 1. Then by

the above lemma since the limit exists limT→∞ T (1− x)2 = 1− p. However,

lim
T→∞

T (1− x)2 = lim
T→∞

1− 2p1/T + p2/T

1
T

= lim
T→∞

2 1
T 2 ln(p)p

1/T − 2
T 2 ln(p)p

2/T

−1
T 2

= lim
T→∞

2 ln(p)(p2/T − p1/T ) = 0

since both p1/T → 1 and p2/T → 1. This contradiction shows that p cannot be interior so

that limT→∞ φT ∈ {0, 1}.
Suppose then that limT→∞ φT = 1. Recall that given the definition of εT ,

lim
T→∞

(1− φ) = lim
T→∞

φ(1− φT )

T (1− φ)
= lim

T→∞

φ′(T )− φT+1[ln(φ) + (T + 1)φ′(T )/φ]

(1− φ)− Tφ′(T )

= lim
T→∞

φ′(T )− φT+1 ln(φ)− (T + 1)φ′(T )φT

(1− φ)− Tφ′(T )

= lim
T→∞

φ′(T )(1− φT )− φT+1 ln(φ)− Tφ′(T )φT

(1− φ)− Tφ′(T )
= 1

since φT → 1, φ → 1, and the convergence of φ implies that its derivative φ′(T ) converges

as well. Thus 1 − φ → 1 so φ → 0. Then it must be that φ converges to something less

than 1, but if this is so then φ(1−φT )
T (1−φ)

→ 0 which contradicts that limT→∞ φ < 1. The only

remaining possibility is that limT→∞ φT = 0.

Lemma 5. For the price series defined in Proposition 7 pt = p0 + (1−φt)η+
∑t

i=1 λφ
t−izt,

define the partial series XT = 1
T

∑T
t=1 pt. This series can be expressed as

XT = p0 + η − φ(1− φT )

T (1− φ)
η +

1

T

T∑
t=1

t∑
i=1

λφt−izt

Moreover, the variance of the unknown part of this series (to the agent who knows η) takes

the form

V ar

(
1

T

T∑
t=1

t∑
i=1

λφt−izi

)
=

φ(1− φ)Ω

T (1 + φ)
−
(
(1− φT )

T (1 + φ)

)(
(1 + φT )

T (1 + φ)

)
φ3Ω

Proof. Define the partial series XT = 1
T

∑T
t=1 pt. Then

XT =
1

T

T∑
t=1

pt =
1

T

T∑
t=1

[
p0 + (1− φt)η +

t∑
i=1

φt−iλzt

]

= p0 + η − φ(1− φT )

T (1− φ)
η +

1

T

T∑
t=1

t∑
i=1

φt−iλzt
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For each T variance of XT (given that the zi are independent) is

V ar

(
1

T

T∑
t=1

t∑
i=1

λφt−izi

)
= E

( 1

T

T∑
t=1

t∑
i=1

λiziφ
t−i

)2
 =

1

T 2
λ2Ω

T∑
t=1

t∑
i=1

φ2(t−i)

=
φ(1− φ)2Ω

T 2

T∑
t=1

t−1∑
j=0

(
φ2
)j

=
φ(1− φ)2Ω

T 2

T∑
t=1


(
1− (φ2)

t
)

1− φ2


=

φ(1− φ)2Ω

T 2(1− φ2)

T∑
t=1

(
1−

(
φ2
)t)

=
φ(1− φ)Ω

T (1 + φ)
− φ(1− φ)Ω

T 2(1 + φ)

T∑
t=1

(
φ2
)t

=
φ(1− φ)Ω

T (1 + φ)
− φ(1− φ)Ω

T 2(1 + φ)

(
φ2(1− φ2T )

1− φ2

)
=

φ(1− φ)Ω

T (1 + φ)
− φ3(1− φ2T )Ω

T 2(1 + φ)2

=
φ(1− φ)Ω

T (1 + φ)
−
(
(1− φT )

T (1 + φ)

)(
(1 + φT )

T (1 + φ)

)
φ3Ω

Proof of Proposition 8. Combining Proposition 7 and lemmas 2 - 4

lim
t→∞

E[pt] = lim
t→∞

p0 + (1− φT )η = p0 + η.

Define the partial series XT = 1
T

∑T
t=1 pt. Then

Let ε > 0. By Markov’s inequality,

Pr(|XT − (p0 + η)| ≥ ε) ≤
E
[(

p0 + η − φ(1−φT )
T (1−φ)

η + 1
T

∑T
t=1

∑t
i=1 φ

t−iλzt − (p0 + η)
)2]

ε2

=
1

ε2


[
φ(1− φT )

T (1− φ)
η

]2
+ E

( 1

T

T∑
t=1

t∑
i=1

φt−iλzt

)2


=

(
φ(1−φT )
T (1−φ)

)2
η2 + φ(1−φ)Ω

T (1+φ)
−
(

(1−φT )
T (1+φ)

)(
(1+φT )
T (1+φ)

)
φ3Ω

ε2

where the last equality comes from Lemma 5. Then

Pr(|XT − (p0 + η)| < ε) ≤ 1−

(
φ(1−φT )
T (1−φ)

)2
η2 + φ(1−φ)Ω

T (1+φ)
−
(

(1−φT )
T (1+φ)

)(
(1+φT )
T (1+φ)

)
φ3Ω

ε2
−→ 1

as T → ∞ since φ → 1 by Lemma 3, φT → 0 by Lemma 4, and 0 ≤ φ(1−φT )Ω
T (1+φ)

≤ φ(1−φT )Ω
T (1−φ)

→ 0

by Lemma 3 which implies φ(1−φT )Ω
T (1+φ)

→ 0. Therefore plimT→∞
1
T

∑T
t=1 pt = p0 + η.
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Proof of Proposition 9. Since the market maker is not aware of the confidence bias it

still sets λ =
√
φ(1− φ) such that φ = 1− φ(1−φT )

T (1−φ)
. From the proof of Proposition 6 we was

that the agent’s optimal demand for the asset is

xt =
1

2λ

[
η −

T∑
t=2

µt

(
t−1∑
i=1

λφt−ixi

)]

Now with a weight γ put on being a first mover, µ1 = γ
T
and all other beliefs µt =

T−γ
T (T−1)

,

and supposing that all other xi are symmetric,

x =
1

2λ

[
η −

T∑
t=2

T − γ

T (T − 1)

t−1∑
i=1

λφt−ixi

]
=

η

2λ
− T − γ

T (T − 1)

xi

2

T∑
t=2

t−1∑
j=1

φj

=
η

2λ
− T − γ

T (T − 1)

xi

2

T∑
t=2

φ− φT

1− φ
=

η

2λ
− T − γ

T (T − 1)

xiφ

2(1− φ)

(
T − 1− φT

1− φ

)
Imposing symmetry of x = xi demand becomes

2x(1− φ) =
(1− φ)η

λ
− x

T − γ

T − 1

(
φ− φ(1− φT )

T (1− φ)

)
which simplifies to

x =
(1− φ)η

λ
T−1

[(T − 1)− (2φ− 1)(γ − 1)]

Proof of Proposition 10. From the proof of Proposition 7 we determined that

pt = p0 + λx
1− φt

1− φ
+

t∑
i=1

φt−iλzt

So with demand x = (1−φ)η
λ

t−1
[(t−1)−(2φ−1)(γ−1)]

expected price in time t is

E[pt] = p0 +
(1− φ)η

1
t−1

[(t− 1)− (2φ− 1)(γ − 1)]

(
1− φt

1− φ

)
Then

lim
t→∞

E[pt] = lim
t→∞

{
p0 +

(1− φt)η
1

t−1
[(t− 1)− (2φ− 1)(γ − 1)]

}

= p0 +
limt→∞(1− φt)η

limt→∞
1

t−1
[(t− 1)− (2φ− 1)(γ − 1)]

= p0 + η
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since φ → 1, and φt → 0. Thus limt→∞ E[pt] = p0 + η.

Define the partial series XT = 1
T

∑T
t=1 pt. Then

XT =
1

T

T∑
t=1

pt =
1

T

T∑
t=1

[
p0 +

(1− φt)η
1

t−1
[(t− 1)− (2φ− 1)(γ − 1)]

+
t∑

i=1

φt−iλzt

]

= p0 +
1

T

T∑
t=1

[
(1− φt)η

1
t−1

[(t− 1)− (2φ− 1)(γ − 1)]

]
+

1

T

T∑
t=1

t∑
i=1

φt−iλzt

Let ε > 0 and δ > 0. By Markov’s inequality,

Pr(|XT−(p0 + η)| ≥ ε) ≤ E[(XT − (p0 + η))2

ε2

=

E
[(

p0 +
1
T

∑T
t=1

[
(1−φt)η

1
t−1

[(t−1)−(2φ−1)(γ−1)]

]
+ 1

T

∑T
t=1

∑t
i=1 φ

t−iλzt − (p0 + η)
)2]

ε2

=

(
1
T

∑T
t=2

[
(t−1)(1−φt)−[(t−1)−(2φ−1)(γ−1)]

[(t−1)−(2φ−1)(γ−1)]

]
η
)2

ε2
+

φ(1−φ)Ω
T (1+φ)

−
(

(1−φT )
T (1+φ)

)(
(1+φT )
T (1+φ)

)
φ3Ω

ε2

=

(
1
T

∑T
t=2

[
−[(2φ−1)(1−γ)+φt(t−1)]
[(t−1)+(2φ−1)(1−γ)]

]
η
)2

ε2
+

φ(1−φ)Ω
T (1+φ)

−
(

(1−φT )
T (1+φ)

)(
(1+φT )
T (1+φ)

)
φ3Ω

ε2

<

(
1
T

∑T
t=2

[
(2φ−1)(1−γ)+φt(t−1)

(t−1)

]
η
)2

ε2

φ(1−φ)Ω
T (1+φ)

−
(

(1−φT )
T (1+φ)

)(
(1+φT )
T (1+φ)

)
φ3Ω

ε2

=

(
1
T

∑T
t=2

(2φ−1)(1−γ)
(t−1)

+ 1
T

∑T
t=1 φ

t
)2

η2

ε2
+

φ(1−φ)Ω
T (1+φ)

−
(

(1−φT )
T (1+φ)

)(
(1+φT )
T (1+φ)

)
φ3Ω

ε2

Choose T ′ such that T > T ′ =⇒ 1
T

∑T
t=2

(2φ−1)(1−γ)
(t−1)

<
(

ε
η

√
δ
6

)
, 1

T

∑T
t=1 φ

t <
(

ε
η

√
δ
6

)
, and

φ(1−φ)Ω
T (1+φ)

−
(

(1−φT )
T (1+φ)

)(
(1+φT )
T (1+φ)

)
φ3Ω < ε2δ

3
, where the last is assured by lemmas 2 - 4. Then for

T > T ′,

Pr(|XT−(p0 + η)| ≥ ε)

<

(
1
T

∑T
t=2

(2φ−1)(1−γ)
(t−1)

+ 1
T

∑T
t=1 φ

t
)2

η2

ε2
+

φ(1−φ)Ω
T (1+φ)

−
(

(1−φT )
T (1+φ)

)(
(1+φT )
T (1+φ)

)
φ3Ω

ε2

<

((
ε
η

√
δ
6

)
+
(

ε
η

√
δ
6

))2
η2

ε2
+

ε2δ
3

ε2
= δ

Since the choice of ε and δ was arbitrary, limT→∞ Pr(|XT − (p0 + η)| ≤ ε) = 1 and

plimT→∞
1
T

∑T
t=1 pt = p0 + η.
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Proof of Proposition 11. From the proof of Proposition 9 we saw that

x =
η

2λ
− T − γ

T (T − 1)

xiφ

2(1− φ)

(
T − 1− φT

1− φ

)
If the agent believes all others act as though they have a uniform distribution over position

t ≤ T , then xi =
(1−φ)η

λ
and

x =
η

2λ
−
(
T − γ

T − 1

)
(1− φ)η

2(1− φ)λ

(
φ− φ(1− φT )

T (1− φ)

)
=

η

2λ

[
2(T − γ)(1− φ)

T − 1
+

γ − 1

T − 1

]
=

η

λ

[
(1− φ) +

(γ − 1)(2φ− 1)

2(T − 1)

]

Proof of Proposition 12. From the proof of Proposition 7 we determined that

pt = p0 + λx
1− φt

1− φ
+

t∑
i=1

φt−iλzt

Given that demand is x = (1−φ)η
λ

+ (γ−1)(2φ−1)η
2λ(t−1)

from Proposition 11, the expected price in

time t becomes

E[pt] = p0 + (1− φt)η +

(
(1− φt)

(t− 1)(1− φ)

)
(γ − 1)(2φ− 1)

2
η

so that

lim
t→∞

E[pt] = p0 + η

since φt → 0 by Lemma 4, and
(

1−φt

(t−1)(1−φ)

)
→ 0 by Lemma 3. Thus limt→∞ E[pt] = p0 + η.

Define the partial series XT = 1
T

∑T
t=1 pt. Then

XT =
1

T

T∑
t=1

[
p0 + (1− φt)η +

(
(1− φt)

(t− 1)(1− φ)

)
(γ − 1)(2φ− 1)

2
η

]
+

1

T

T∑
t=1

t∑
i=1

φt−iλzt

= p0 +
1

T

T∑
t=2

[
(1− φt)η +

(
(1− φt)(γ − 1)(2φ− 1)

2(t− 1)(1− φ)

)
η

]
+

1

T

T∑
t=1

t∑
i=1

φt−iλzt
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Let ε > 0 and δ > 0. By Markov’s inequality,

Pr(|XT−(p0 + η)| ≥ ε) ≤ E[(XT − (p0 + η))2

ε2

=

E
[(

p0 +
1
T

∑T
t=1

[
(1− φt)η +

(
(1−φt)(γ−1)(2φ−1)

2(t−1)(1−φ)

)
η
]
+ 1

T

∑T
t=1

∑t
i=1 φ

t−iλzt − (p0 + η)
)2]

ε2

=

(
1
T

∑T
t=2

[
(1−φt)(γ−1)(2φ−1)

2(t−1)(1−φ)
− φt

]
η
)2

ε2
+

φ(1−φ)Ω
T (1+φ)

−
(

(1−φT )
T (1+φ)

)(
(1+φT )
T (1+φ)

)
φ3Ω

ε2

<

(
1
T

∑T
t=2 −

[
[φ(1−φt)(1−γ)(2φ−1)]

2φt(1−φ)
+ φt

]
η
)2

ε2
+

φ(1−φ)Ω
T (1+φ)

−
(

(1−φT )
T (1+φ)

)(
(1+φT )
T (1+φ)

)
φ3Ω

ε2

=

(
1
T

∑T
t=2

[(1−γ)(1−φ)(2φ−1)]
2φ

+ φt
)2

η2

ε2
+

φ(1−φ)Ω
T (1+φ)

−
(

(1−φT )
T (1+φ)

)(
(1+φT )
T (1+φ)

)
φ3Ω

ε2

=

((
T−1
T

) [(1−γ)(1−φ)(2φ−1)]
2φ

+ 1
T

∑T
t=2 φ

t
)2

η2

ε2
+

φ(1−φ)Ω
T (1+φ)

−
(

(1−φT )
T (1+φ)

)(
(1+φT )
T (1+φ)

)
φ3Ω

ε2

Choose T ′ such that T > T ′ =⇒
(
T−1
T

) [(1−γ)(1−φ)(2φ−1)]
2φ

<
(

ε
η

√
δ
6

)
, 1

T

∑T
t=1 φ

t <
(

ε
η

√
δ
6

)
,

and φ(1−φ)Ω
T (1+φ)

−
(

(1−φT )
T (1+φ)

)(
(1+φT )
T (1+φ)

)
φ3Ω < ε2δ

3
, which is assured by lemmas 2 - 4. Then for

T > T ′,

Pr(|XT−(p0 + η)| ≥ ε)

<

((
T−1
T

) [(1−γ)(1−φ)(2φ−1)]
2φ

+ 1
T

∑T
t=1 φ

t
)2

η2

ε2
+

φ(1−φ)Ω
T (1+φ)

−
(

(1−φT )
T (1+φ)

)(
(1+φT )
T (1+φ)

)
φ3Ω

ε2

<

((
ε
η

√
δ
6

)
+
(

ε
η

√
δ
6

))2
η2

ε2
+

ε2δ
3

ε2
= δ

Since the choice of ε and δ was arbitrary, limT→∞ Pr(|XT − (p0 + η)| ≤ ε) = 1 and

plimT→∞
1
T

∑T
t=1 pt = p0 + η.

36


	Introduction
	Related literature
	The model
	The case of no uncertainty

	Introducing uncertainty
	Two agents
	T identical agents

	A notion of confidence
	Confidence: The mindful investor
	Confidence: The myopic investor

	Concluding remarks

